教程 #
基础 #
【视频】李宏毅 2021/2022 春机器学习课程 #
【视频】吴恩达机器学习系列课程 #
【视频】吴恩达深度学习 deeplearning.ai #
【视频】林轩田机器学习基石 #
【视频】机器学习技法(林轩田) #
Fafa-DL/Lhy_Machine_Learning #
李宏毅 2021 春季机器学习课程课件及作业
microsoft/ML-For-Beginners #
Azure Cloud Advocates at Microsoft are pleased to offer a 12-week, 26-lesson curriculum all about Machine Learning.
Avik-Jain/100-Days-Of-ML-Code #
MLEveryday/100-Days-Of-ML-Code #
机器学习 100 天
llSourcell/Learn_Machine_Learning_in_3_Months #
This is the code for “Learn Machine Learning in 3 Months” by Siraj Raval on Youtube
FudanNLP/nlp-beginner #
NLP-Beginner:自然语言处理入门练习
进阶 #
dive into deep learning #
动手学深度学习 #
将《动手学深度学习》(Dive into Deep Learning) 原书中的 MXNet 实现改为 PyTorch 实现 #
ShusenTang/Dive-into-DL-PyTorch
将《动手学深度学习》(Dive into Deep Learning)原书中的 MXNet 实现改为 TensorFlow 2.0 实现 #
TrickyGo/Dive-into-DL-TensorFlow2.0
动手学强化学习 #
手写实现李航《统计学习方法》书中全部算法 #
dod-o/statistical-learning-method_code
机器学习白板推导系列 #
shuhuai007/machine-learning-session
机器学习白板系列 笔记 #
josephmisiti/awesome-machine-learning #
ZuzooVn/machine-learning-for-software-engineers #
A complete daily plan for studying to become a machine learning engineer.
自上而下的学习路线:软件工程师的机器学习
ageron/handson-ml #
A series of Jupyter notebooks that walk you through the fundamentals of Machine Learning and Deep Learning in python using Scikit-Learn and TensorFlow.
fighting41love/funNLP #
NLP 民工的乐园:几乎最全的中文 NLP 资源库
eriklindernoren/ML-From-Scratch #
Machine Learning From Scratch. Bare bones NumPy implementations of machine learning models and algorithms with a focus on accessibility. Aims to cover everything from linear regression to deep learning.
trekhleb/homemade-machine-learning #
Python examples of popular machine learning algorithms with interactive Jupyter demos and math being explained.
kailashahirwar/cheatsheets-ai #
Essential Cheat Sheets for deep learning and machine learning researchers
rasbt/python-machine-learning-book #
The “Python Machine Learning (1st edition)” book code repository and info resource
afshinea/stanford-cs-229-machine-learning #
VIP cheatsheets for Stanford’s CS 229 Machine Learning https://stanford.edu/~shervine/teaching/cs-229/
ujjwalkarn/Machine-Learning-Tutorials #
machine learning and deep learning tutorials, articles and other resources http://ujjwalkarn.github.io/Machine-Learning-Tutorials/
janishar/mit-deep-learning-book-pdf #
MIT Deep Learning Book in PDF format (complete and parts) by Ian Goodfellow, Yoshua Bengio and Aaron Courville
斯坦福大学 2014(吴恩达)机器学习教程中文笔记 #
fengdu78/Coursera-ML-AndrewNg-Notes
进阶 #
christophm/interpretable-ml-book #
Book about interpretable machine learning https://christophm.github.io/interpretable-ml-book/
mingchaozhu/interpretablemlbook #
该书为《Interpretable Machine Learning》中文版。该书原作者是 Christoph Molnar,他是一名统计学家和机器学习者 @christophM。该书的项目 地址,这是一个很棒的工作。你可以在 releases 中下载本书英文版 pdf。
我是 朱明超,同样,我也是一名机器学习者。关于此书的译本,我在翻译后进行了校正。如果你在英文原书中看到某些表述问题,可以参考我在中文书里的描述。当然,由于英文原书是较早前出版的,本书并不是完全基于英文书,作者 Christoph Molnar 在《Interpretable Machine Learning》的 网页版 中对内容不断填充,所以中文版的翻译主要基于网页版 (内容会多于英文书)。你可以在 releases 中下载本书中文版 pdf。
hangtwenty/dive-into-machine-learning #
Dive into Machine Learning with Python Jupyter notebook and scikit-learn! http://hangtwenty.github.io/dive-into-machine-learning/
RedditSota/state-of-the-art-result-for-machine-learning-problems #
This repository provides state of the art (SoTA) results for all machine learning problems.
scutan90/DeepLearning-500-questions #
深度学习 500 问,以问答形式对常用的概率知识、线性代数、机器学习、深度学习、计算机视觉等热点问题进行阐述
rushter/MLAlgorithms #
Minimal and clean examples of machine learning algorithms implementations
叶王 © 2013-2024 版权所有。如果本文档对你有所帮助,可以请作者喝饮料。