LRU 缓存机制 #
题目 #
运用你所掌握的数据结构,设计和实现一个 LRU (最近最少使用) 缓存机制。它应该支持以下操作: 获取数据 get 和 写入数据 put 。
获取数据 get(key) - 如果密钥 (key) 存在于缓存中,则获取密钥的值(总是正数),否则返回 -1。 写入数据 put(key, value) - 如果密钥已经存在,则变更其数据值;如果密钥不存在,则插入该组「密钥 / 数据值」。当缓存容量达到上限时,它应该在写入新数据之前删除最久未使用的数据值,从而为新的数据值留出空间。
进阶:
你是否可以在 O(1)
时间复杂度内完成这两种操作?
示例:
LRUCache cache = new LRUCache( 2 /* 缓存容量 */ );
cache.put(1, 1);
cache.put(2, 2);
cache.get(1); // 返回 1
cache.put(3, 3); // 该操作会使得密钥 2 作废
cache.get(2); // 返回 -1 (未找到)
cache.put(4, 4); // 该操作会使得密钥 1 作废
cache.get(1); // 返回 -1 (未找到)
cache.get(3); // 返回 3
cache.get(4); // 返回 4
Design and implement a data structure for Least Recently Used (LRU) cache. It should support the following operations: get and put.
get(key) - Get the value (will always be positive) of the key if the key exists in the cache, otherwise return -1. put(key, value) - Set or insert the value if the key is not already present. When the cache reached its capacity, it should invalidate the least recently used item before inserting a new item.
The cache is initialized with a positive capacity.
Follow up: Could you do both operations in O(1) time complexity?
Example:
LRUCache cache = new LRUCache( 2 /* capacity */ );
cache.put(1, 1);
cache.put(2, 2);
cache.get(1); // returns 1
cache.put(3, 3); // evicts key 2
cache.get(2); // returns -1 (not found)
cache.put(4, 4); // evicts key 1
cache.get(1); // returns -1 (not found)
cache.get(3); // returns 3
cache.get(4); // returns 4
分析 #
题解 #
class DLinkedNode:
def __init__(self):
self.key = 0
self.val = 0
self.pre = None
self.next = None
class LRUCache:
def _add(self, node: DLinkedNode):
node.next = self.head.next
node.pre = self.head
self.head.next.pre = node
self.head.next = node
def _remove(self, node: DLinkedNode):
if not node or not node.pre or not node.next:
return
node.pre.next = node.next
node.next.pre = node.pre
def _move_to_head(self, node: DLinkedNode):
self._remove(node)
self._add(node)
def _pop_tail(self) -> DLinkedNode:
if self.size == 0:
return None
node = self.tail.pre
self._remove(node)
return node
def __init__(self, capacity: int):
self.capacity = capacity
self.size = 0
self.cache = {}
self.head = DLinkedNode()
self.tail = DLinkedNode()
self.head.next = self.tail
self.tail.pre = self.head
def get(self, key: int) -> int:
node = self.cache.get(key, None)
if not node:
return -1
self._move_to_head(node)
return node.val
def put(self, key: int, value: int) -> None:
node = self.cache.get(key, None)
if not node:
node = DLinkedNode()
node.key = key
node.val = value
self.cache[key] = node
self.size = self.size + 1
self._add(node)
if self.size > self.capacity:
node = self._pop_tail()
del(self.cache[node.key])
else:
node.val = value
self._move_to_head(node)
叶王 © 2013-2024 版权所有。如果本文档对你有所帮助,可以请作者喝饮料。